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»The immune system and immune modalities of fruit flies

»Mechanisms of innate immunity in fruit flies



What is innate immunity in fruit flies?



What is innate immunity ?

w ) The immune system ——an important system for the body to
—_— perform immune responses and immune functions.
iy Y - ;}. vy Composition—— immune organs, immune cells and immune
" - molecules.

Function—— recognize and eliminate antigenic foreign bodies,
coordinating with other systems of the body, and jointly

maintaining the stability of the environment and physiological
balance in the body.




What is innate immunity in fruit flies?
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Innate immunity ——Conservative body-defense mechanisms produced earlier;the first line of defense

against invading pathogens and plays an essential role in defending the brain against infection, injury,
and disease. (Insect)

Adaptive immunity——The whole process in which antigen-specific T/B lymphocytes in vivo are
activated, proliferated, and differentiated into effector cells after receiving antigen stimulation, resulting
in a series of biological effects. (Mammal)



Melnogaster's innate immune response
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Melnogaster's innate immune response

Cellular immunity——Plasma cells

» consists of hemocytes that phagocytose, encapsulate, and kill invading
microbes, much like vertebrate macrophages.

» The process involved:Phagocytosis, conditioning, encapsulation,
coagulation, and blackening

Humoral immunity——Induced in fat body, acting in the blood
Innate immune response in fruit flies

» involves the secretion of soluble factors, such as antimicrobial peptides
(AMPs), into the hemolymph following immune activation.

» involves Toll, IMD,. JAK-STAT and JNK pathway——systemic immune
response.

melanization

» whereby melanin is deposited at wound sites and parasite surfaces,
resulting in the release of toxic reactive oxygen species.

» involves phenoloxidase and a series of protein cascades.



Sexual dimorphisms in innate immunity at basal state
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Summary:

Fruit flies only have innate immunity, but not vertebrate adaptive immunity, which quickly activates the immune response of fruit flies when infected by

pathogens.

In general, immune reactions in Drosophila can be categorized into systemic, epithelial and cellular immunity . The systemic immune response is
characterized by the synthesis of immune effector molecules such as the antimicrobial peptides (AMPs) by the cells of the fat body—a functional

equivalent of the mammalian liver—and their release into hemolymph to address infections by microorganisms.

Epithelial immunity fights against invading microorganisms at the level of the barrier epithelia such as gut and trachea, and significantly contributes to

the protection of flies . For instance, in the gut, both the synthesis of AMPs and production of reactive oxygen species (ROS) characterize this response.

The cellular immune response is centered on the action of hemocytes, which play a major role in the phagocytosis of microorganisms and apoptotic

cells .

The innate immunity of fruit flies is sexually dimorphic, and immune-related genes are upregulated or downregulated during the immune response, and

this difference in immune response will lead to different behavioral outputs in the face of different pathogens.



Mechanisms of innate immunity in fruit flies



Microbiome assembly on Drosophila body surfaces benefits the flies to combat fungal infections
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(Song Hong, Yanlei Sun et.al.iScience.2022)



Bacterial load increase on the Drosophila body surfaces after eclosion for different times and variations in fly survival and
AMP gene expressions
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The bacterial loads on flies could deter fungal topical infections by inhibiting fungal spore germinations.
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The bacterial load increase in flies after eclosion and that the surface bacteria could inhibit fungal spore germination.

* The bacterial loads quickly increased on fly surfaces within 10
days of eclosion, which could benefit the flies to battle fungal
infections by the inhibition of spore germinations.

* Besides the recessed area of body parts, the tarsal segments
were found to be densely accumulated with bacterial cells
probably owing to the contact and contaminations with food

nutrients and fecal bacteria.




Innate immune pathways activated in the Drosophila brain following injury, infection and neurodegenerative disease

Nucleus \ Cytoplasm

(Shu Hui Lye and Stanislava Chtarbanova.Int. J. Mol. Sci. 2018.)



NOS contributes to pathogen destruction
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* Inactivation of NOS impairs the ability of Drosophila to combat subsequent infections by two different

routes.
* L-NAME severely compromises Spz-independent host defenses. The major defense against gram-negative

bacteria such as Ecc is thought to be mediated via the Spz-independent Imd pathway.



NO is a signaling molecule in the Imd/Rel pathway
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NO effects on Drosomycin expression

[i-palactosidase activity (a.u.)
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It appears that inhibition of NOS does not prevent
infection-dependent Drs induction.

Infection-mediated induction of Drs may occurs via two
pathways —— a NOS dependent and independent one.



NOS involvement in hemocyte responses to infection
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The domino mutant interferes with NO induction of Dipt, but not induction of Drs.
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PPO2 is stored in the crystals of crystal cells

Lz-Gald, UAS-GFP
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PPO2 is stored in crystal cells while PPO1 is either a minor component of the crystal or most probably released from
crystal cells into the hemolymph.



PO1 and PO2 both contribute to injury-mediated melanization in larvae and adults
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Melanization is dispensable for Toll and Imd pathway activation
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Melanization contributes to survival to wounding and to infection with Gram- positive bacteria
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PPOs cooperate with the Toll pathway in promoting host defense against Gram-positive bacteria,
notably Lysine-type strains.



PPOs contribute to survival to infection with entomopathogenic fungi
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melanization significantly contributes to the survival to fungal and Gram-positive bacterial infections.



Model for systemic RNAI viral immunity in Drosophila melanogaster.
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In vivo dsRNA immunization provides sequence-specific antiviral protection in D. melanogaster.
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Inoculation of dsRNA initiates a bona-fide, specific RNAi response that protects flies against virus infection

The efficiency and persistence of the dsRNA mediated antiviral immunity in Drosophila, and supports the

idea that exogenous dsRNA can initiate an RNA silencing response in flies.



Increased viral susceptibility of dsRNA uptake deficient mutants.
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Core RNAi machinery and antibacterial immunity are intact in dsRNA uptake mutants.
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Mutant flies support efficient RNAi silencing if dsRNA uptake is bypassed through expression of dsRNA
hairpins intracellularly or by injecting dsRNA into syncytial embryos.



Systemic spread of dsRNA follows virus infection and it is essential for effective antiviral immunity
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* Defects in cellular components that abrogate dsRNA uptake and its ensuing antiviral immunity do not generally

impair other arms of the fly innate immune system.
* Infected cells released viral dsRNA that is subsequently taken up by uninfected cells through the dsRNA uptake
pathway thereby eliciting an antiviral RNAi response.

* Avirus specific derived RNAI signal spread from the thorax to the head early after infection.



Summary:

In Drosophila, systemic infections of bacteria and fungi trigger the synthesis of AMPs, mediated by NF-kB pathway Toll and IMD. The Toll
pathway is primarily activated against gram-positive bacteria and fungi, while the IMD pathway, which is primarily directed at gram-
negative bacteria, is activated. Activation of these two pathways relies on the recognition of microbial cell wall components or virulence
factors by Drosophila pattern recognition receptors (PRRs), leading to nuclear translocations of NF-kB transcription factors leading to the

expression of hundreds of genes .

Autophagy goes through a series of defined stages that ultimately lead to the isolation and degradation of cytoplasmic components, a
process that involves vesicles subsequently fusing with lysosomes to form autolysosomes, which undergo acidification to activate

lysosomal enzymes, thereby degrading the engulfed contents.



Phagocytosis is a powerful way for fruit flies to clear apoptotic bodies or bacterial infections. This complex cellular
process begins with the identification of particles to be ingested, followed by cytoskeletal remodeling and signaling
events leading to the engulfment and destruction of particles.

RNA interference (RNAI) is the main defense mechanism of fruit flies against viruses and mobile genetic elements. This
pathway relies on the perception of double-stranded RNA (dsRNA) from external or endogenous sources.

The melanization reaction involves the rapid synthesis of melanin at the site of infection or injury to contain microbial
pathogens and promote wound healing. A key enzyme in melanin biosynthesis is phenol oxidase (PO), which catalyzes
the oxidation of phenolic compounds to hydroquinone and subsequent polymerization into melanin. PO is normally

synthesized as an inactive proenzyme (PPO), which is activated by the proteolytic cascade to produce active PO.



Host —parasitoid
interactions in
Drosophila
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Parasitic manifestations are prevalent in living organisms




What are the typical parasites that fruit flies are related to?



Insights from natural host—parasite interactions: The Drosophila model

Keebaugh, E. S. & Schlenke, T. A. Dev Comp Immunol. 2014.

the only other natural Drosophila-parasite
Interactions studied at the genetic level are
fruit fly interactions with endo-parasitoid
wasps that lay eggs in fly larvae.



How Are Bacteria Sensed by the Nervous System?

Mechanisms of interactions between microbes and the Drosophila nervous system

Gram-negative
bacteria _,Grooming
=
\ -’ Chemosensory
Saccharomyces cerevisiae

Lactobaciiius plantarum

e 3

/\m"a

Lactabacilli

Propionic acid
R *  butyric acid
o Owvary
- ek !

Bacteria P Antenna ™ :
and yeast b ¢ (Olfaction]

) Proboscis
Bacteria . (Gustation)
and fungl .- _ "'-,

==

: , Hemolymph
Pathogenic bacteria i
in carnivarious feces Upd 2"3 i ot s
Peptdoglyean Gut
L ] I.II|I..I B N OB N MO NN A
‘ i I O Loyl .I_ I| L ifg it
- - Guthaﬂtm = - =

...-.-.-.---.......-.II.
Enterocytes

Montanari, M. & Royet, J. Cells. 2021



Some typical parasitic wasp species:

L. boulardi and L. heterotoma is particularly well studied
K& /3: L. boulardi

=851 L. heterotoma

 What are the interactions between a parasitic wasp and its host?
« Defense-protection mechanisms in fruit flies and parasites?



From the parasitic wasp
Two main factors in finding hosts: food - pheromones
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Larval parasitoid uses aggregation pheromone of adult hosts in foraging
behaviour: a solution to the reliability-detectability problem

Choice (no. of females)
Choice {no. of females)

J.S.C. Wiskerke, M. Dicke, LLEM. Vet
Deparunent of Entomology, Wageningen Agricultural University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands

Received: 15 June 1992 / Accepted: 21 August 1992




From the fruit flies

Larvae exhibit escape behavior when infected by parasitic wasps

md class IV neurons

Hwang RY, et al,.

Curr Biol. 2007
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Drosophila avoids parasitoids by sensing their semio-chemicals via or49a and or85f

From the fruit flies
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From the fruit flies
Wasps reduce the number of eggs laid by females
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T. Lefe'vre et al., Biol. Lett. 2012



Two outcomes of parasitic wasps infecting larvae

A Trichopria droscphilae| B

Wound healing after
oviposition
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Successful encapsulation involves activation of immune cells within the hemolymph
and lymph gland (LGH#FEEZE

one avirulent strain L. boulardi

: : f‘" -
The encapsulation reaction ﬁ\_,,_/ B
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Lee et al. Adv Parasitol. 2012
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Sterile wounding is a minimal and sufficient trigger for a cellular immune response
In Drosophila melanogaster
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Markus, R., et al. Immunol Lett .2005



The nociception genes painless and Piezo are required for the cellular immune
response of Drosophila larvae to wasp parasitization
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Successful parasitism: by destroy lamellocytes and specifically deleting a
significant proportion of hematopoietic precursors

TUNELZ
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Lei Yang., et al. Insect Science. 2021 A. Nappi, . et al., Advances in Parasitology., 2009 Chiu, H. & Govind, S. Cell Death &amp; Differentiation 2002



Behavioral Immunity toward Parasitoid Wasps



Consumption of ethanol by D. melanogaster can protect them and also kills

Internal wasp parasites

proportional eclosion outcome
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D. melanogaster medicates offspring with alcohol after exposure to wasps,
with participation of vision and NPF
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Flies form long-term memories of seeing wasps

in the presence of wasps after wasp pre-exposure
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Genetic inheritance of ethanol preference is caused by maternal NPF inhibition
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Exposed legacy offspring have enhanced cellular response following immune induction

A

Fy treatment period

4
|

5
F,, embrya callaction period

2
A F development | .

|
Time (days) _

’
Move to new chamber for '

)
' #

s
> E

Hir | 1

plerced cuticls

embryo collection of F,

generation

Pk

e

(e ' Gantrol:
¥ e unchallanged
tl,ﬂr k4 U’,u, e ‘/
& ]
BT 1Y)

e

é - &

B immune response to Lv phil

Proportion of encapsulated wasp eggs

wasp infection O Unexposed
L= legacy
B Exposed
0.8 legacy
*
06
*
044
. j
ol Rl L
9] OreR

Cell abundance (nomalized)

Hemocyte composition in F, CS larvae

g 8 & 8 B

B B

0

Bl ot o
e fiﬁ v

Q‘\

Uninduced Induced——

Bozler, J., et al., G3. 2020



Larvae lacking maternal PGRP-LB have enhanced cellular response

following iImmune induction
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Egg-lay reduction : matured oocyte retention and increased apoptosis in the ovaries
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Parasitoid-induced egg-lay depression is innate and regulated by vision, olfactory .
NPF-NPFR signaling
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Sight of parasitoid wasps accelerates sexual behavior in female Drosophila
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Conclusions:

Students (no direct vision of the wasps)

Apoptosis dependent
egg-laying drop

W, W,

Apoptosis dependent
. EEg-laying drop

Wasp laying its egg in

the larvae ,‘ Wasp egg encapsulation
fi by lamellocytes and
\, meelanization Shift in the preference for
. aleohol-enriched
o g . oviposition sites
- A

Behavioural defense mecanism
- Rolling escape behaviour mediated by Class IV
neuran dependent nociception

Neurobiological and genetic control strategies for avoidance or avoidance behavior in
Drosophila adults and larvae during host-sensing, as well as immune defenses involving
different types of blood cells
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Innate immunity

Adaptive immunity x

(phagocytosis)

Innate immunity in Drosophila melanogaster

Drosophila melanogaster

Central nervous system
* Production of AMPs
and/or cytokines

¢ Inflammation
e Neuronal death and
degeneration

Respiratory system
(Trachea in flies and lungs
in humans)

® Production of AMPs

Systemic response
(Fat body in flies and liver
in humans)

¢ Production of AMPs
* Acute phase response

Digestive system

(Gut in flies and humans)

® Production of AMPs

e Local ROS production
via Duox and Nox

Excretory system

Plasmatocyte Lamellocyte

Crystal cell (melanization
and clotting)

(Malpighian tubules in
flies and kidneys in humans)
¢ Production of AMPs

¢ Hormonal regulation

(encapsulation)

Cellular response
(Haemolymph in flies, and
blood and lymph in humans)
* Phagocytosis

e Clotting and coagulation

* Cytokine secretion

Innate immunity

Adaptive immunity

Nature Reviews | Inmunology

Nicolas Buchon, 2014



Schematic overview of Drosophila host defense
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Antimicrobial peptides(AMPs) in different animals
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Born: August 2, 1941 (age 81) Luxembourg

Awards And Honors: Nobel Prize (2011)
Subjects Of Study: Drosophila immune system nonspecific immunity

Insect defensins: inducible antibacterial
peptides*

Jules A. Hotfmann and Charles Hetru

In response to bacterial challenge or trauma, insects produce a battery of
bactericidal or bacteriostatic molecules with a broad spectrum of activity
against Gram-positive andfor Gram-negative bacteria; most are small-
sized cationic peptides. This review focuses on insect defensins, a large
group of inducible antibacterial peptides that are present both in ancient

Jules Alphonse Hoffmann and recent insect orders. This immune response of insects shares many of
the characteristics of the mammalian acute phase response.

French immunologist




Immune system - - Sleep

?




Evolution of AMPs and origin of AMPs as drugs

A AMPs currently under clinical trial B Origin of AMPs in the AMP database
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nemuri (nur) overexpression promotes sleep
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NUR Is a secreted protein and its ectopic expression induces sleep
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nur encodes an antimicrobial peptide that promotes
survival upon expression in neurons
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Requirement of nur for sleep depth and for acute sleep induction
after sleep deprivation or infection
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NUR is induced by sleep loss and is localized to the
dFSB area of the brain
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